Rethinking Coal: Thin Films of Solution Processed Natural Carbon Nanoparticles for Electronic Devices.
نویسندگان
چکیده
Disordered carbon materials, both amorphous and with long-range order, have been used in a variety of applications, from conductive additives and contact materials to transistors and photovoltaics. Here we show a flexible solution-based method of preparing thin films with tunable electrical properties from suspensions of ball-milled coals following centrifugation. The as-prepared films retain the rich carbon chemistry of the starting coals with conductivities ranging over orders of magnitude, and thermal treatment of the resulting films further tunes the electrical conductivity in excess of 7 orders of magnitude. Optical absorption measurements demonstrate tunable optical gaps from 0 to 1.8 eV. Through low-temperature conductivity measurements and Raman spectroscopy, we demonstrate that variable range hopping controls the electrical properties in as-prepared and thermally treated films and that annealing increases the sp(2) content, localization length, and disorder. The measured hopping energies demonstrate electronic properties similar to amorphous carbon materials and reduced graphene oxide. Finally, Joule heating devices were fabricated from coal-based films, and temperatures as high as 285 °C with excellent stability were achieved.
منابع مشابه
Fully Solution-Processed Flexible Organic Thin Film Transistor Arrays with High Mobility and Exceptional Uniformity
Printing fully solution-processed organic electronic devices may potentially revolutionize production of flexible electronics for various applications. However, difficulties in forming thin, flat, uniform films through printing techniques have been responsible for poor device performance and low yields. Here, we report on fully solution-processed organic thin-film transistor (TFT) arrays with g...
متن کاملLarge-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material.
The integration of novel materials such as single-walled carbon nanotubes and nanowires into devices has been challenging, but developments in transfer printing and solution-based methods now allow these materials to be incorporated into large-area electronics. Similar efforts are now being devoted to making the integration of graphene into devices technologically feasible. Here, we report a so...
متن کاملAl Doped ZnO Thin Films; Preparation and Characterization
ZnO is a promising material suitable for variety of novel electronic applications including sensors, transistors, and solar cells. Intrinsic ZnO film has inferiority in terms of electronic properties, which has prompted researches and investigations on doped ZnO films in order to improve its electronic properties. In this work, aluminum (Al) doped ZnO (AZO) with various concentrations and undop...
متن کاملSolution-processed inorganic semiconductors
The search for semiconductors that can be solutionprocessed into thin-film form at low temperature, while simultaneously providing quality device characteristics, represents a significant challenge for materials chemists. Continuous thin films with field-effect mobilities of 10 cm V s or greater are particularly desirable for high-speed microelectronic applications. Attainment of this goal shou...
متن کاملPolymeric Thin Films for Organic Electronics: Properties and Adaptive Structures
This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2016